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ON A METHOD OF STUDYING STEADY-STATE OSCILLATIONS 

OF AN ELASTIC HALF-SPACE CONTAINING A CAVITY 

V.A. BABESBEO, M.G. SELEZNEV, T.N. SELEZNEVA and V-P. SOKOLOV 

A method is proposed by means of which it is possible to study a plane or axisym- 
metric boundary-value problem of the theory of elasticity for tlw steady-state oscil- 

lations of an elastic half-space containing a circular, cylindrical or spherical 
cavity. A superposition principle is applied, allowing the problam to be reduced 
to the solution of a system of integral equations of the second kind, Features of 
unknown stress functions in the neighborhood of the corner points are studied-After 
these features have been determined, the solution of the problem is reduced to the 
solution of a quasi-complete regular infinite system of linear algebraic equations. 
By means of this method, it is possible to study the case in which the cavity reach- 
es the surface of the medium. 

1. Let us consider the plane problem of determining the steady-state oscillations of an 
elastic half-space with a cavity in the form of a circular cylinder whose axis is parallel to 
the surface of the half-space. 

The motion of the points of the medium is described by dynamic displacement equations of 
the theory of elasticity, called Land equations ,fl/. The region filled by the elasticmedium 
is given, in a Cartesian rectangular coordinate system thus: x>o, r>a, (where a is the 
radius of the hole, and x = h, y = 0 are the coordinates of its center). The following bound- 
ary conditions are imposed on the boundary of the region: 

I = 0, u, = t, (Y)e-'et, TN = t, (y)e-'eg (1.1) 

r=a, ur=rl(q))ei@*, TV = r,(cp)e-*of 

('I, 
r= (s-W-f-FP, rp=arctg&) 

Here (r, cp) is the local cylindrical coordinate system bound with the cylindrical hole and o 
is the frequency of the steady-state oscillations. 

At infinity the components of the displacement and stress vectors are decreasingandtend 

to zero. 
'i'he solution of our boundary-value problem may be constructed in the form of a sum ofthe 

solutions of the following two boundary-value problems: the problem of determining the steady- 
state oscillations of a homogeneous elastic half-space affected by stresses 

x = 0, b* = x, (&e-'a', 'Txy = X*(&e-'O' 

acting on the surface, and the problem of determining the steady-state oscillations of ah 
infinite elastic space with a cylindrical notch at the surface of which a load 

is applied. 

r =i a, u, = Y, (~p)e-~~*, zzv = Y, (r~~)e-'@~ 

By combining the solutions of the above two problems, we may satisfy 
tions (1.1) of the initial problem. To determine the functions x,(& and 
obtain a system of four integral equations: 

the boundary condi- 

Y3 (cp) (i = 1, 2) I we 

(1.2) 
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yk (Cp) + 1 XI (‘l) 1 ykl(4 Cp) e”‘-•)drl du + 
-m 6 

Yk2(~,cp)e’U(‘1Yddtldu=~k(~), k=1,2 
-0D (I 

i 

arccosh 
yo = 

e 9 Ihl<a 

0, IhI>@ 

Whenever the cavity reaches the surface of the medium (Ih I< a), the required functions 

Yk (cp) (k = 1, 2) in the region Y<y,,,Y>2n --,, are assumed equal to zero. The choice of 
the contour u in (1.2) is dictated by the principle of limiting absorption /2/. In our case, 
the contour encompasses the negative pole and the branching point of the functions Y,j(u, cp) 
from above, and the positive poles underneath, and otherwise coincides with the real axis. 

The right half of the contour that lies in the half-plane Reu>O is denoted henceforth by 

u+. 
We present expressions for oI1(")(y) and Yu(u,cp) : 

qp (y) = IaOnEln - amEznl Ib,,a, - b&J’ 

E1,(y)~2~([~(Cos2~~--Isin2~~)- 

(+ + 1 + COS2# H:'(elro)+ 

+(cos 2rp0- i sin2cpa)H','!,(81r0)] 

~(-_s2~cp~--isin2Y~)+ i%] H(nl)&ro)- 

Zipn 
ah = 0 

[ 
+ H’,‘) pIa) - wz% (e,a)] 

Y~~(a,cp)=~[(2na-~3[~(~coscp+i$sincp-e~a)+ 

2(u*cos2m - ep~osa cp)+ 2iuIusin2q] e-en - 

201~ $- +coscp+i 
[ ( 

gain,)+ 2opuces2cp + 

i(2u*- 8%‘) sin2q]e+Q] 

~~*=a*- eja; ela, PO’ 
_' 

PeO' es*=-, j--l, 2 
P 

6 = (u*" + l&2)0 - 4uru#, Cc0 = .z J_ = h - a. cos cp 
y, = y lCo = --asincp 

Here (H,,(*)(z) are Hankel functions of the first kind, pis the density of the medium, and I 
and p are the Lame coefficients. Because of the rest functions are cumbersome, they are not 
presented here. 

The system (1.2) may be considered in a space of integrable functions. With this class 
of functions, the energy determined by a solution of the dynamic problems of the theory of 
elasticity and bounded within any finite volume will be finite. 

Note that the operators in the right side of (1.2) are not continuous in a space of in- 
tegrable functions whenever the cavity reaches the surface of the half-space (Ih \<a). There- 
fore, In these cases it is necessary to construct a system regularizer. This construction 
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reduces to the identification of the singular part of the kernels of the system /2,'. To Iciest- 

ify a bounded operator that is not completely continuous, we studied the behavior of the func- 
tions @Jn)(y) as n --+ 30 and WO,(U, rp) as 1 u I-_* 00. 

We now investigatethebehavior of the required functions in a neighborhood of the corner 
points of the region. For this purpose, we substitute the limiting values of the functzons 
Qtitfnf and y@,.in the system (1.2) and undertake the substitution of variables 5 = y - fn 
X = 'p - PO - Applying a Mellin /3/ transformation with respect tro the parameters ; and X to 

the resulting system (the functions Y,(cp),Ykt(@(cp), and tk(q) are continued analytically for 
this purpose to the region cp>2n - y,,), we obtain a system of linear algebraic equations in 
the Mellin transform of the &known f'Gctions: 

AX = B, A = 11 a&j Ij (is j = I, 2. 3, 4) 

X = co1 (Y, (PI7 y, (I& XI @f. x, fp)) 

B = ~01 (4 (I-J)* tz (PL ~1 @)t % (P)) 

all =~~Sin~0cosIp(n--Yoi+yol~ ma = - a11 

al% =~sinyosin[p(n-y0)fyof. ffO~=alO 

ass = 
sin@ - y0) 

sinpn ’ a34 = 
2 sin ye 

x sin [p (n - ~0) -t- ~01 

a+4 = 
~~n[P(~-nJ+2yol ; 

al3 = a34 =a51=arz= 1 s1n pn 

a 14 = uzs = ass = a 11 = at3 = 0; y. = arcccos+ 

Here p is the parameter of the Mellin transformation, and y. is 

(1.31 

the angle in the plane 
z = 0 between the y-axis and the tangent to the circle at the corner point. 

Solving the system (1.3) by Cramer's rule /4/, we obtain the expressions 

A, (~1 
&(P)=yqp (k = i, 2) (1.4) 

A(P)==~ + 2~~cosWn - Yo) + ZYOI- 

*sin[(n - y0) P + 2yol sinP(n - Yo) 

for the Mellin transform of the required functions, 
To convert formulas (3..4), it is necessary to determine the roots of the equation A(p) = 

0, bearing in mind that Rep E (0, i). The equation A(p) = 0 was studied numerically on a 
computer, and it was established that with fixed y,,, it has only a single root po; the rela- 

tion between PO and YO is presented in the Fig-l. Thus the residue theorem may nowbe applied. 

Applying the inverse Mellin transformation to (1,4), we find that in a neighborhood of a 

singular point, 

Y,(c)- 
c, 

OP. ’ Xk (I/) - (k=1,2) 

cI = A, (p;,iryl’po,, j = 1, 2, 3, 4, y. = v= 

The system of integral equations (1.2) may be reduced to an infinite system of linear 

albebraic equations of the form 

Here 
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The system (1.5) is quasi-complete by regular if IhI>U, 
since it approximates a system of integral equations with completely 
continuous operator. In the case Ihl(a, we arrive at a system of 
the form (1.5) after regularization of the system of integral equa- 
tions (1.2). Inthenew system, only the form of the integrand 

functions (which determine the coefficients of the system) changes. 
In this case, the system of linear equations (1.5) will also be 
quasi-completely regular, understood as a system generated by a 
completely continuous operator. 

The solution of the system (1.5) in both cases may be effect- 
ively carried out numerically on a computer by using the truncation 
method and estimating the virtual convergence of the process. 

2. Let us consider the problem of determining the steady-state oscillationsofanelastic 
half-space containing a spherical cavity in an axisymmetric formulation. 

The motion of the points of the medium is described by the Lam& dynamic equations. In a 

cylindrical coordinate system (R, z), the medium occupies the region r,<O, r = r/m 
h)2>a where a is the radius of the spherical cavity, and R = 0 and z. = -1~ are the co- 

ordinates of its center. In the case of axial sysnnetry, the cylindrical coordinates (R, Z) 

are related to the spherical coordinates (r, a) by the relations 

r=dR*+(z+hY, a=twtg&, R-rsina 

z=rcosa-h 

Suppose a load 

z = 0, 0, = t, (R) e-'@', zRz = ~,(R)I+~~ 
r = a, uT = tl (a)e-‘O’, rm = tl (a) e-im* 

(2.1) 

oscillating with frequency o is applied at the boundary of the region. 
At infinity the components of the displacement and stress vectors are decreasing and 

tend to zero. 
The solution of this boundary-value problem is constructed as in the case of a cylindrical 

hole using the principle of super-position in the form of a sum of the solutions of the bound- 
ary-value problems for determining the steady-state axisyrmnetric oscillations of an elastic 
half-space affected by the harmonic loads 

z = 0, (7, = X,(R)@', r& = x.(R)C?+ 

and the problem of determining the vibrations of an infinite elastic space with spherical cav- 
ity of radius a at whose surface are specified the stresses 

r = a, CT, = Y, (a)cio’, T,= = Y, (a)eimt 

If the boundary conditions (2.2) of the initial boundary-value problem are met, as in 
Sect.1, we arrive at the following system of integral equations of the second kind for deter- 
mining the unknown functions XI(R) and Yj(U) : 

Yk (Co + j fix, (B) S Y~I (u. a) J1 (Bu) u du 4 + 
Co (I+ 

(2.2) 

1 arccos(h/a), Ihl<a, 

yO= 0, )hI>u, po= 
1 
lGxF,~h~<a, 

0. lhl>a 
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Here P,(cos$) are Legendre polynomials and J,(z) are Bessel functions. The choice of 
the contour c+ is directed by the principle of limiting absorption. 

Since the functions @,j(n)(R) and Ypj(U,a) have a cumbersome form, we present only one 
example of each functions: 

@it&, (erro) p, (~0s a) - 

r. = r Iwo = vm, a0 = arctg (R/h) 

Y12(u,a)=7 2u {a2[@2* + u*)&* - 2u2e0**] [uJ0(R0u)- 

RilJ1 (Rou)j sin's - uu~((u*2+ u')@* - 2ulwqx 
Jo ( Rou) cos2a + [(u2” + u’) F* - 4u%~o~e’~“~l Jr (%u) X 

211op 
sin acosa) + 7 (u~~-a~) u'kWo(R&); 

z. = 2 Jr== = a co9 Q - h, R. = R jr- = a sh a 

The remaining parameters were described in Sect-l. Note that the basic properties ofthe 
elements of the system (2.2) are analogous to the properties of the system (1.2). 

In the case (Is I( a (the spherical cavity crosses the surface of the half-space), in the 
foregoing it is necessary to regularize the system (2.2). For this purpose, we investigate 
the behavior of the unknown functions in a neighborhood of the corner points. As in the 
problem of Sect.1, the Mellin transforms X,(p) and I'/(p) of the required functions are 
determined by the relations (1.4), i.e., the unknown functions for the problem of determining 
the spherical and cylindrical holes in an elastic half-space have the same features at the 
comer points of the region. The system (2.2) may be reduced to an infinite quasi-complete 
regular system of linear algebraic equations of the form (1.5) (Ih I> a) where 

(2.3) 

@G’(R) Y,, (~1, cp) Jr (Ru)] Rsin cpD,P, (cos cp) dq dR du 

7’:’ = s f i,tl (R) ‘Fy,l (u. (p) Jo (Ru) + t2 (R) '4',2 (~7 cp) x 

(I+0 0 

J, (Ru)lR sin cpD,Pk (cos cp) dcpdRdu 
(a, p = I,?; k, n = 0, 1, 2, . ..) 
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In the case Jh (<a, an analogous system is obtained after regularization of the system 
(2.2). Here only the outward form of the coefficients of F$ and 2'2" in (2.3) changes,while 
the basic properties are retained. 

In conclusion, note that if this method is used to study steady-state oscillations in 
regions containing comer points, the order of the singularities of the unknown functions in 
a neighborhood of the corner point is determined by the geometry of the section in the coord- 
inate plane containing the corner point. It is precisely in studying in an analogous fashion 
the problem for wedge-shaped regions obtained from the superposition of two half-spaces in a 
two-dimensional formulation that the order of the singularities will be somewhat different 
than in the case of the problem of determining a spherical or cylindrical cavity (for an angle 
of opening of a plane wedge equal to the angle y0 between the plane and tangent to the section 
of the sphere of cylinder at the comer point). From the latter fact, we may conclude that 
the presence of curvature in one of the lines in the coordinate section containing the corner 
point alters the order of the singularity of the unknown functions determined from the inte- 
gral equation to which the solution of the boundary-value problem reduces in this approach. 
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